Error estimates for Hermite interpolation on spheres
نویسندگان
چکیده
منابع مشابه
Error estimates for scattered data interpolation on spheres
We study Sobolev type estimates for the approximation order resulting from using strictly positive definite kernels to do interpolation on the n-sphere. The interpolation knots are scattered. Our approach partly follows the general theory of Golomb and Weinberger and related estimates. These error estimates are then based on series expansions of smooth functions in terms of spherical harmonics....
متن کاملHermite interpolation with radial basis functions on spheres
We show how conditionally negative deenite functions on spheres coupled with strictly completely monotone functions (or functions whose derivative is strictly completely monotone) can be used for Hermite interpolation. The classes of functions thus obtained have the advantage over the strictly positive deenite functions studied in 17] that closed form representations (as opposed to series expan...
متن کاملMEAN VALUE INTERPOLATION ON SPHERES
In this paper we consider multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have concentric spheres. Indeed, we consider the problem in three variables when it is not correct.
متن کاملError estimates for generalized barycentric interpolation
We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(02)00451-1